MICROBIAL CONVERSION OF MILBEMYCINS: 28-HYDROXYLATION OF MILBEMYCINS BY Amycolata autotrophica

KEIKO NAKAGAWA[†], KAZUO SATO^{††}, YOSHIHISA TSUKAMOTO^{††} and AKIO TORIKATA[†]

[†]Fermentation Research Laboratories, Sankyo Co., Ltd.,
1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140, Japan
^{††}Agricultural Chemicals Research Laboratories, Sankyo Co., Ltd.
1041 Yasu, Yasu-cho, Shiga 520-23, Japan

(Received for publication September 24, 1992)

Milbemycins are a family of sixteen-membered macrolides produced by *Streptomyces hygroscopicus* subsp. *aureolacrimosus*. They exhibit broad-spectrum insecticidal and acaricidal activity.^{1~3)}

In the course of our studies on the microbial conversion of milbemycins, we obtained 13β -hydroxymilbemycins A_4 , A_3 , D, 13β -hydroxy-LL-F28249 α , 28-hydroxymilbemycin D, and 28-hydroxy-LL-F28249 α by using *Cunninghamella echinulata.*⁴⁾ In the former effort, some of the microorganisms were estimated to convert milbemycin A_4 (1a) into 28-hydroxy derivative (1b) which was anticipated as a useful compound for synthesizing new milbemycin derivatives. However, the low conversion yield prevented isolation and structuredetermination of the fermentation mixtures. We continued the screening to find a microorganism which possessed higher hydroxylation activity. Consequently *Amycolata autotrophica* subsp.

canberrica ATCC 35203 was found to convert milbemycin A_4 (1a) into 28-hydroxymilbemycin A_4 (1b) efficiently.

The present paper deals with the 28-hydroxylation of milbemycin A_4 (1a) and A_3 (2a) by *A. autotrophica* ATCC 35203.

Converted milbemycins were detected by TLC (Merck Art. 5715: EtOAc) and HPLC (column: Waters, Nova pak C_{18} 8 mm × 10 cm; solvent: system 1, acetonitrile - water (75:25), with a flow rate of 1.5 ml/minute; system 2, acetonitrile - water (55:45), with a flow rate of 1.0 ml/minute; detector: UV 243 nm).

A. autotrophica ATCC 35203 was cultured in twenty 500-ml Erlenmyer flasks containing 100 ml MY medium composed of 1.0% of glucose, 0.5% of Polypepton (Daigo Nutritive Chemicals), 0.3% of yeast extract (Difco), and 0.3% of malt extract (Difco) (pH $6.3 \sim 6.5$), at 28° C on a rotary shaker $(200 \sim 220 \text{ rpm})$. After 2 days cultivation, milbemycin A_4 (5% [w/v] in 1,4-dioxane) was added to a final concentration of 250 μ g/ml and cultivation was continued for seven additional days. Then the culture broth was extracted with three 1,000-ml portions of EtOAc. The EtOAc extract was dried over anhydrous sodium sulfate and evaporated. This extract was then purified by silica gel chromatography ($20 \sim 90\%$ EtOAc in *n*-hexane as an eluent) to give 32 mg (6.2%) of 28-hydroxymilbertycin A₄ (1b).

Milbemycin A_3 (2a) (500 mg) which is a congener of milbemycin A_4 (1a), was subjected to the similar conversion conditions as used for milbemycin A_4 , and 11 mg (2.1%) of the corresponding 28-hydroxy derivative was obtained. The Rf values on TLC and HPLC retention times of 28-hydroxy derivatives are listed in Table 1. The physico-chemical properties of 28-hydroxymilbemycin A_4 (1b) and A_3 (2b) were as follows:

Table 1. TLC Rf values and HPLC retention times of milbemycins and conversion products.

Compound ^a	TLC Rf ^b values	HPLC Rt's ^b (minutes)	
		System 1	System 2
1a	0.59	16.07	
1b	0.18	4.97	18.26
2a	0.59	11.80	
2b	0.18	3.98	12.29

^a a: Substrate; b: product.

^b Rf values and retention times relative to 13β -hydroxymilbemycin A₄.⁴

28-Hydroxymilbemycin A_4 (1b): IR (KBr) cm⁻¹ 3650~3150 (br s), 2957 (s), 2928 (s), 2873 (s), 1715 (s), cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 5.67 ~ 5.94 (2H, m, 9-H, 10-H), 5.25~5.44 (3H, m, 3-H, 11-H, 19-H), 5.01 (1H, t, J=7.7 Hz, 15-H), 4.67 and 4.74 $(2H, ABq, J = 14.3 Hz, 27-H_2), 4.29 (1H, br s, 5-H),$ 4.16 (1H, s, 7-OH), 3.96 (1H, d, J=6.1 Hz, 6-H), 3.51~3.72 (2H, m, 17-H, 28-H), 3.39 (1H, dd, J = 8.1, 10.9 Hz, 28 -H), 3.27 (1H, dd, J = 2.2, 4.6 Hz, 2-H), 3.08 (1H, dt, $J_d = 2.8$ Hz, $J_t = 9.2$ Hz, 25-H), 2.46~2.59 (1H, m, 12-H), 2.16~2.38 (4H, m, 5-OH, 13-H, 16-H₂), 2.01 (1H, ddd, J = 1.6, 5.0, 12.1 Hz, 20-H), 1.87 (3H, s, 26-H₃), 1.55 (3H, s, 29-H₃), 1.22~1.94 (10H, m, 13-H, 18-H, 20-H, 22-H₂, $23-H_2$, 24-H, $31-H_2$), 0.99 (3H, t, J = 7.3 Hz, $32-H_3$), $0.80 \sim 0.95$ (1H, m, 18-H), 0.83 (3H, d, J = 6.5 Hz, 30-H₃); MS m/z 558 (M⁺, C₃₂H₄₆O₈), 430, 412, 372, 330, 288, 264, 245,195, 167; HREI-MS calcd for C₃₂H₄₆O₈: 558.3193, found: 558.3183.

28-Hydroxymilbemycin A_3 (2b): IR (KBr) cm⁻¹ 3650~3100 (br s), 2968 (s), 2927 (s), 2873 (s), 1719 (s); ¹H NMR (270 MHz, CDCl₃) δ 5.75 ~ 5.96 (2H, m, 9-H, 10-H), 5.26 ~ 5.43 (3H, m, 3-H, 11-H, 19-H), 5.04 (1H, t, J = 7.8 Hz, 15-H), 4.67 and 4.73 (2H, dABq, $J_d = 2.0 Hz$, $J_{ABq} = 15.5 Hz$, 27-H₂), 4.29 (1H, d, J = 5.6 Hz, 5-H), $4.10 \sim 4.25$ (1H, brs, 7-OH), 3.95 (1H, d, J = 5.6 Hz, 6-H), $3.50 \sim 3.61$ (1H, m, 17-H), 3.55 (1H, dd, J = 5.4, 10.4 Hz, 28-H), 3.39 $(1H, dd, J = 8.2, 10.4 Hz, 28-H), 3.21 \sim 3.30 (2H, m,$ 2-H, 25-H), 2.42~2.61 (1H, m, 12-H), 2.16~2.28 (3H, m, 13-H, 16-H₂), 2.02 (1H, dd, J=4.2, 11.8 Hz, 20-H), 1.87 (3H, s, 26-H₃), 1.55 (3H, s, 29-H₃), 1.20~1.92 (8H, m, 13-H, 18-H, 20-H, 22-H₂, 23-H₂, 24-H), 1.15 (3H, d, J = 6.0 Hz, 31-H₃), 0.85~1.02 $(1H, m, 18-H), 0.83 (3H, d, J = 6.4 Hz, 30-H_3); MS$ m/z 544 (M⁺, C₃₁H₄₄O₈); 416, 398, 372, 330, 288, 264, 250, 231, 181, 167, 153; HREI-MS calcd for C31H44O8: 544.3036, found: 544.3049.

We have reported that C-30, C-26, and C-29 methyl groups of milbemycin A_4 (1a) were

hydroxylated by microorganisms.^{5~7} In this report the 28-hydroxylation of milbemycin A_4 (1a) was confirmed. Thus, all the methyl groups of milbemycin A_4 can be selectively hydroxylated by microbial conversion. Further studies on microbial conversion of milbemycin A_4 (1a) involving the side chain at C-25 are in progress.

References

- TAKIGUCHI, Y.; H. MISHIMA, M. OKUDA, M. TERAO, A. AOKI & R. FUKUDA: Milbemycins, a new family of macrolide antibiotics: Fermentation, isolation and physico-chemical properties. J. Antibiotics 33: 1120 ~ 1127, 1980
- OKAZAKI, T.; M. ONO, A. AOKI & R. FUKUDA: Milbemycins, a new family of macrolide antibiotics: Producing organisms and its mutants. J. Antibiotics 36: 438~441, 1983
- MISHIMA, H.; J. IDE, S. MURAMATSU & M. ONO: Milbemycins, a new family of macrolide antibiotics. Structure determination of milbemycins D, E, F, G, H, J and K. J. Antibiotics 36: 980~990, 1983
- 4) NAKAGAWA, K.; S. MIYAKOSHI, A. TORIKATA, K. SATO & Y. TSUKAMOTO: Microbial conversion of milbemycins: Hydroxylation of milbemycin A₄ and related compounds by *Cunninghamella echinulata* ATCC 9244. J. Antibiotics 44: 232~240, 1991
- NAKAGAWA, K.; A. TORIKATA, K. SATO & Y. TSUKAMOTO: Microbial conversion of milbemycins: 30-Oxidation of milbemycin A₄ and related compounds by *Amycolata autotrophica* and *Amycolatopsis mediterranei*. J. Antibiotics 43: 1321~1328, 1990
- 6) NAKAGAWA, K.; K. SATO & T. OKAZAKI & A. TORIKATA: Microbial conversion of milbemycins: 13β ,29-Dihydroxylation of milbemycins by soil isolate *Streptomyces cavourensis*. J. Antibiotics 44: $803 \sim 805$, 1991
- NAKAGAWA, K.; K. SATO, Y. TSUKAMOTO & A. TORIKATA: Microbial conversion of milbemycins: 29-Hydroxylation of milbemycins by genus Syncephalastrum. J. Antibiotics 45: 802~805, 1992